MATH ACADEMY UPPER ELEMENTARY

Robyn Seifert Decker UltraMathPD@gmail.com

AGENDA

- Place Value
- Addition
- Subtraction
- Problem Solving
- Fractions
- If time allows: Multiplication and Division

Spiral of change

From Prochaska, DiClemente \& Norcross, 1992, p1104

MATH PRACTICES

A teacher every day asks:

- Did I do math sense-making about math structure using math drawings to support math explaining?

Can I do some part of this better tomorrow?

BASE-TEN UNITS

- Place value drawings to help conceptualize numbers and understand the relative size of place values
- Once concept of the 1 s is understood move to drawings without dots
- 5 hundred boxes (5 squares that each contain 100 dots) $=500$.
- 3 quick tens (5 line segments that each connect 10 dots) $=30$.
- 7 ones (7 circles that each contain 1 dot) $=7$.

place value drawings

Reason Abstractly and Quantitatively

- How much is a box worth?
- How much is a stick worth?
- How much is a circle worth?
- How can you count to find the number shown in the drawing?

Students should be able to explain the "10 times" pattern for ones, tens, hundreds, and thousands.

- Understanding that each place value is 10 times as great as the value of the previous place.

SECRET CODE CARDS

Tools

Grade 3 the quantities are on the back

- Expanded form gives the English repeating
 counting sequence
- Standard form you read the English number and the position tells the value
- Word form shows the values in words
- Our number system is a base ten within a base thousand system
- So we say 468thousand, 2hundred35

Structure

- Value of the digit 1 differs in each place
- Value to the left is multiplied by 10
- Value to the right is divided by 10

MATH TALK

Using secret code cards as a tool to provide structure...
The importance of the place value to explain how to find the expanded form of the number 1,263 .

Digit \times Place Value $=$ Total Value
$1 \times 1,000=1,000$
1,000 is the total value of 1

$2 \times 100=200,6 \times 10=60,3 \times 1=3$

Combine total values $1,000+200+60+3$
What's another way to read this number?

DISCUSS WITH YOUR TABLE

0

Formative Assessment: Check Understanding

Student Summary Ask students to give the value of the 8 in 384 and use the Secret Code Cards to show they are correct. Students should explain that the 8 is in the tens place and has a value of 80 . Students should expand the Secret Code Cards to show 384 and to show that the 8 has a value of 80 .

- Understanding how numbers can be grouped and ungrouped in different ways is important to developing and understanding methods for multidigit addition and subtraction.

MAKE A TEN, HUNDRED, THOUSAND

 STRATEGYCounting-On by Tens 80

- $80+50$
- Think 8 tens +5 tens
- Say: 8 tens
- Count on until you have counted 5 tens: 9 tens, 10 tens, 11 tens, 12 tens, 13 tens. The answer is 13 tens or 130
- Counting-On by Hundreds

Counting-On by Thousands

GROUP A NEW DECADE

- Draw a proof picture using the "Count-on" strategy to find the answer to $37+6$.

$$
\begin{aligned}
& 40 \\
& 37 \circ \circ 0 \circ \circ \circ \\
& 40+3=43
\end{aligned}
$$

- Circle the next decade number in the drawing.
- Label the decade number in the drawing.
- Write the "decade" equation.
- Now try and discuss: 48 + 5 and $76+8$.

GROUP A NEW TEN, HUNDRED, THOUSAND

- Draw a proof picture using the "Count-on" strategy to find the answer to $80+50$.

$$
80+20=100
$$

$$
80+50
$$

- Draw the hundred number in the drawing.
- Label the hundred number in the drawing.
- Write the "hundred" equation.
- Now try and discuss: $700+500$ and $900+600$.

ROUNDING

- Tools
- Discuss the value and position of each digit
- Precision

$$
8,354
$$

- Explain when rounding we look to the right of the hundreds place and because it is 5 , we round 354 up to 400

8,400

Abstractly and Quantitatively

	357	399
321		
300		343
301		

The Meaningful Development of Standard Algorithms in the CCSS-M

The CCSS-M conceptual approach to computation is deeply mathematical and enables students to make sense of and use the base ten system and properties of operations powerfully. The CCSS-M focus on understanding and explaining such calculations, with the support of visual models, enables students to see mathematical structure as accessible, important, interesting, and useful.

The relationships across operations are also a critically important mathematical idea. How the regularity of the mathematical structure in the base ten system can be used for so many different kinds of calculation is an important feature of what we want students to appreciate in the elementary grades.

It is crucial to use the Standards of Mathematical Practice throughout the development of computational methods.

Misconceptions about the CCSS-M and the

NBT Progression

These are all wrong.

The standard algorithm is the method I learned.
The standard algorithm is the method commonly taught now (the current common method).

There is only one way to write the algorithm for each operation.

The standard algorithm means teaching by rote without understanding.
Teachers or programs may not teach the standard algorithm until the grade at which fluency is specified in the CCSS-M.

Initially teachers or programs may only use methods that children invent.

Teachers or programs must emphasize special strategies useful only for certain numbers.

What Is the Standard Algorithm?

The NBT Progression document summarizes that the standard algorithm for an operation implements the following mathematical approach with minor variations in how the algorithm is written:
-decompose numbers into base-ten units and then carry out single-digit computations with those units using the place values to direct the place value of the resulting number; and
-use the one-to-ten uniformity of the base ten structure of the number system to generalize to large whole numbers and to decimals.

To implement a standard algorithm one uses a systematic written method for recording the steps of the algorithm.

JUST LOOK AT OVERALL STRUCTURE

Drawings and Written
Variations of Standard Algorithms

Ungroup Everywhere First, Then Subtract Everywhere

40	+3
60	2400
7	180
280	21

Rectangle Sections

Sections

Place Value Sections	Expanded Notation	
	43	$=40+3$
2400	+ 67	$=60+7$
180	60×40	$=2400$
280	60×3	$=180$
+ 21		$=280$
2881	7×3	$=\begin{array}{r}21\end{array}$
		2881

Expanded Notation

$$
67 \begin{array}{r}
3 \\
40 \\
2881 \\
-2680 \\
\hline 201 \\
-201 \\
\hline
\end{array}
$$

$R \rightarrow$ L Ungroup, Then Subtract, Ungroup, Then Subtract

1-Row
Current Common New Groups Above
${ }^{1} \frac{1}{8}$
$\begin{array}{r}157 \\ \hline 346\end{array}$

Digit by Digit
$67 \begin{array}{r}43 \\ 2881 \\ -268 \\ \hline 201 \\ -201 \\ \hline\end{array}$

EXPLORE ADDITION METHODS

- Proof Drawings support the development of place value language.
- Expanded Notation
- Show All Totals (Left to Right)
- Show All Totals (Right to Left)
- New Ten Groups Below
- New Ten Groups Above

EXPANDED NOTATION

Step 1: Expand each number
Step 2: Add the hundreds
Step 3: Add the tens
Step 4: Add the ones

Step 5: Rewrite in standard form

$$
\begin{aligned}
265 & =200+60+5 \\
+\frac{197}{462} & =\frac{100+90+7}{300+150+12}
\end{aligned}
$$

(LEFT TO RIGHT)

Step 1: Add the hundreds
Step 2: Add the tens
Step 3: Add the ones
Step 4: Add the Sub-totals

$$
\begin{array}{r}
265 \\
+197 \\
\hline 300 \\
150 \\
+12 \\
\hline 462
\end{array}
$$

(RIGHT TO LEFT)

Step 1: Add the ones
Step 2: Add the tens
Step 3: Add the hundreds
Step 4: Add the Sub-totals

$$
\begin{array}{r}
265 \\
+197 \\
\hline 12 \\
150 \\
+300 \\
\hline 462
\end{array}
$$

Step 1: Add the ones (Show the new ten if possible)

Step 2: Add the tens
(Show the new hundred if possible)
Step 3: Add the hundreds

Step 1: Add the ones
(Show the new ten if possible)
Step 2: Add the tens
(Show the new hundred if possible)
Step 3: Add the hundreds

Please turn to the "Independent Practice" and do on your own.

When finished, compare and discuss your work as a table group.

- Have students suggest strategies to avoid the common errors you make for an activity.
- Discuss at your table how this lesson may look in your classroom.

Example:	Example:
744	639
+172	+183
816	731
Error: Forgot to make a new hundred.	Error: Wrote the ones above the tens column and the new 1 ten in the ones column, and forgot to make a new hundred.
Correct answer: 916	Correct answer: 822
Example:	Example:
477	329
+344	+ 483
811	702

0 Formative Assessment: Check Understanding

Student Summary Ask students to discuss examples of common errors they identified. Students should be able to explain that some common errors they found included forgetting to make a new hundred, writing the ones above the tens column and the new 1 ten in the ones column, forgetting to make a new ten, and forgetting to make a new ten and a new hundred.

Error: Forgot to make a new ten.

Correct answer: 821

Error: Forgot to make a new ten and a new hundred.

COMMON SUBTRACTION METHOD

Do you see a potential for errors?

Alternating (Current Common) Method
Ungroup Subtract Ingroup Subtract Subtract

The Ungroup First Method Within 100

Mrs. Green likes this method. Explain what she does.

© What are potential benefits to ungrouping first?

EXPLORE SUBTRACTION

METHODS

- Reminder: Proof Drawings support the development of place value language.
- Expanded Notation
- Ungroup First (Right to Left)
- Ungroup First (Left to Right)

EXPANDED NOTATION

Step 1: Draw 325 and expand both numbers.
Step 2: Do we have enough ones?
Step 3: Do we have enough tens?
Step 4: Subtract
Step 5: Rewrite in standard form.

采 1710
○○○。○

$$
\begin{aligned}
& 200 \\
& 325=300+20+ \\
& -176=-100 \\
& 149=100 \\
& +40 \\
& 325=300+\frac{10}{}=\frac{15}{20}+5 \\
& -70
\end{aligned}
$$

(RIGHT TO LEFT)

Step 1: Draw 325.
Step 2: Do we have enough ones?
Step 3: Do we have enough tens?
Step 4: Subtract

$$
\begin{array}{r}
11715 \\
2^{275} 5 \\
-176 \\
\hline 149
\end{array}
$$

(LEFT TO RIGHT)

Step 1: Draw 325.
Step 2: Do we have enough hundreds?
Step 3: Do we have enough tens?
Step 4: Do we have enough ones?
Step 5: Subtract

$$
\begin{array}{r}
111 \\
21215 \\
325 \\
-176 \\
\hline 149
\end{array}
$$

(LEFF TO RGMF) WMFH ZEROS

Step 1: Draw 105.
Step 2: Do we have enough hundreds?
Step 3: Do we have enough tens?
Step 4: Do we have enough ones?
Step 5: Subtract

INDEPENDENT PRACTICE -

 SUBTRACTION METHODS- Please turn to the "Independent Practice" and do on your own.
- When finished, compare and discuss your work as a table group.

- Formative Assessment: Check Understanding

Student Summary Ask students to explain two subtraction methods-ungrouping from the left and ungrouping from the right. Students should be able to explain the process of ungrouping to subtract.

PROBLEM SOLVING PROCESS

- Understand the situation
- Make sense of the language - to conceptualize the real world situation
- Make sense of the problem
- Reason Abstractly and quantitatively
- Represent the situation with a drawing/situation equation
- Mathematize the situation - focus on mathematical aspects of situation
- Model with mathematics
- Look for and make use of structure
- Solve the representation (write a solution equation)
- Find the answer - use drawings/situation/solution equation
- Use appropriate tools
- Use repeated reasoning

Check the answer makes sense

- Check the answer in the context of the problem - write and explain the label and answer
- Critique the reasoning of others
- Attend to precision

RELATING EQUATIONS

- Becoming flexible problem solvers
- Understanding the product on either side of the equation

8 Related Equations, Not 4 Fact Families

$9+3=12$	$12=9+3$	$9 \times 3=27$	$27=9 \times 3$
$3+9=12$	$12=3+9$	$3 \times 9=27$	$27=3 \times 9$
$12-9=3$	$3=12-9$	$27 \div 9=3$	$3=27 \div 9$
$12-3=9$	$9=12-3$	$27 \div 3=9$	$9=27 \div 3$

$9+3=12$	$12=9+3$	$9 \times 3=27$	$27=9 \times 3$
$3+9=12$	$12=3+9$	$3 \times 9=27$	$27=3 \times 9$
$12-9=3$	$3=12-9$	$27 \div 9=3$	$3=27 \div 9$
$12-3=9$	$9=12-3$	$27 \div 3=9$	$9=27 \div 3$

REPRESENTING THE SITUATION

Operations and Algebraic thinking

- Represent the situation with a drawing, diagram and/or equation
- A situation equation shows the action or the relationships in a problem
- Then decide how to solve for the answer
- A solution equation shows the operation that is performed to solve the problem

0Formative Assessment: Check Understanding

Student Summary Ask students to explain the difference between a situation equation and a solution equation. Require students to support their explanations with examples on the board or in their Math Journals.

MAKE SENSE OF PROBLEMS

Connect diagrams and equations

- Solve problem 2 without doing any work

1. There were 138 students in the gym for the assembly. Then 86 more students came in. How many students were in the gym altogether?
2. There were 224 students in the gym for the assembly. Then 86 students left. How many students were still in the gym?

$138+86$	$=224$
addend + addend	$=$ sum
$224-86$	$=138$
sum - addend	$=$ addend

- Addition and subtraction undo each other

Shayna had some markers. She gave 5 of the markers to her friends. Now she has 2 markers. How many markers
did she have in the beginning?

- How many markers did Shayna give away?
- 5
- How many markers did Shayna have left?
- 2
- What are you trying to find out?
- The number of markers Shayna had when she started
- Is this the unknown number in the situation?
- Yes
- How can we find the unknown number or solution?
- Add 5+2 (the number of markers that Shayna gave away plus the number of markers that were left)
Situation: $b-5=2 \quad$ Solution: $b=2+5$

LABEL MATH DRAWINGS

- Key is understanding the situation
- Labeling explains the parts of the story

ADDITION COMPARISON

- Look at the problem below.
- The word more might lead students to believe that they should add, but they actually need to subtract
- They know the greater quantity and the difference, so subtraction will give them the lesser quantity
- What took more time? How much more time?
- How do we show this?
- How do comparison bars help?

The soccer team rintice for 150 minutes last week. The team drilled for 30 minutes more than it scr game jed. For how long did the team scrimmage?

MULTII-STEP PROBLEMS

- Multiple entry points
- More than one operation
- Identify the helping question(s) or the question(s) that needs to be answered before the final solution can be found

VIDEO: WORD PROBLEMS

- Writing the first step equations
- Represent all steps

Agustin:

$C=$ number of Carla's silly bands
$A=$ number of Agustin's silly bands
$C=4 \times 8=32$
$A+15=C$
$A+15=32$

$$
A=17
$$

Students may be able to solve this problem without writing such equations.

How many fruit on each plate?

Representing 2-Step and Multistep Problems

Students may write a single equation for some problems.
Mr. Helms has 2 stables with 4 horses in each stable. Ms. Martinez has 4 more horses than Mr. Helms. How many horses does Ms. Martinez have?

$$
2 \times 4+4=n, n=12 ; 12 \text { horses }
$$

Some problems may require two steps of representation and solution or students may make drawings rather than equations.

Tim has 9 marbles. Ryan has 3 fewer marbles than Tim. Leslie has 5 more marbles than Ryan. How many marbles does Leslie have?
As always, students may represent or solve in different ways.

TWO STEP WORD PROBLEMS

How many cans does Olivia bring?

Pay attention to the situation
expressed in the problem

- Not numbers and words/phrases
What information does the problem ask for?
- The number of cans Matt brings
- Paraphrase in their own words

๑ What is the hidden question?

- How many cans does Olivia bring?
- Paraphrase again.

> A. How many cans does Olivia bring?

9
B. How many cans does Matt bring?

- What is the problem about?
- Different kinds and amounts of fruit

How many apples and bananas?
$16+12$

- What do you need to find?
- The pieces of fruit that are pears
- What do you know?
- $16+12=28$ fruit

Mathematize

Situation: $36=28+$ pears
Solve: $\quad 36-28=8$ pears

- Rephrase into your own words
- Pay attention to the situation expressed in the problem
- Not numbers and words/phrases

PROBLEM SOLVING PROCESS

The Problem Solving Process

Part A: Understand and represent: Conceptualize bottom up from the situation
Part B: Re-represent and solve: Use related problem types, representations, properties, and /or relationships between +- or $\mathbf{x} \div$

A1. Understand the problem situation
 Mathematize (and Storyize)

A2. Represent the problem situation in a drawing/diagram and/or an equation

Then focus on the question and:

B1. Re-represent to find the unknown
Do the solution actions
B2. Write the answer and check that it makes sense

QUESTIONS/COMMENTS...

- Formative Assessment: Check Understanding

Student Summary Write this problem on the board. Yvette had 18 mysteries and 15 biographies. Then she bought a group of 12 science fiction books. How many books does Yvette have now? Ask students to describe a strategy they would use to solve the problem. Students should be able to explain they would write the equation $18+15+12=n$. Next, use the Commutative Property to switch the order of addends: $18+12+15=n$. Then use the Associative Property to group the numbers to make them easier to add.

- Create equivalent fractions by multiplying or dividing numerators and denominators of given fractions by the same number.
- Compare fractions using a variety of strategies, including rewriting them with a common denominator.
- Add and subtract fractions and mixed numbers with like and unlike denominators.

UNDERSTANDING FRACTIONS

- Emphasize that the equivalent fractions must have the same whole
- Equation: composed of unit fractions
- Visually: Bar diagram labeled with unit fractions
- Visually: Relate bar diagram to Number line diagram

To understand fractions, students fold fraction strips and see and label bar drawings.

Seeing the unit fraction with PLENTY of visual representation \mathbb{E} sense making students understand the denominator stays the same because it is just telling the name of the unit fraction.

UNIT FRACTIONS

- Understand unit fractions as the building blocks of fractions
- Unit fraction $\frac{1}{n}$, where n is the number of equal parts the whole is divided into (MP abstractly/quantitatively)
- $1 / 5=1$ out of 5 equal parts

$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$

- MathBoard fraction bars (MP tools)
- Hands on "look" for understanding
- Moving from hands on strips to pictures

UNIT FRACTIONS

- Whole numbers are obtained by combining some number of 1
- $3=1+1+1$
- Same as fractions are obtained by combining some number of unit fractions

UNIT FRACTIONS

- Viewing non-unit fractions as sums of unit fractions helps students avoid common errors in adding fractions. (MP model/make sense)

$$
3 / 8+5 / 8=1 / 8+1 / 8+1 / 8+1 / 8+1 / 8+1 / 8+1 / 8+1 / 8=8 / 8
$$

UNIT FRACTIONS

Viewing non-unit fractions as sums of unit fractions helps students avoid common errors in subtracting fractions.

- We had 5/8 of a pizza. Then we ate $3 / 8$ of it. How much pizza is left?
- What operation do we use?
- We use subtraction because we are taking away one part from another.
- How can we subtract the fractions?
- Subtract the numerators and leave the denominators the same.
- Using the Mathboards and unit fractions show why we subtract fractions this way.

$$
5 / 8-3 / 8=2 / 8
$$

$$
D<+><+D \ll 1 / 8+1 / 8
$$

GENERATE EQUIVALENT HALVES

New vocabulary: n-split (or n-fracture)

- Write the fraction $1 / 2$ on the board. Ask students to suggest as many fractions as they can that are equivalent to $1 / 2$.

$$
\frac{1}{2}=\frac{3}{6}=\frac{4}{8}=\frac{2}{4}
$$

- Please notice that the fraction chain does not need to be in the traditional order that we are used to seeing it.
- Leave this fraction chain on the board as we explore n split

EQUIVALENT FRACTIONS

- Begin by looking at the fraction bars that are equal to1/2
- Draw a vertical line at the end of $1 / 2$
- Discuss the relationships the students should see
- Use the Mathboards (MP tools)
- Look for the relationships when finding all of the $1 / 2$ fractions (MP structure)

EQUIVALENT FRACTIONS: I DO

- Show the dividing of the $1 / 2$ length into smaller unit fractions and the multiplying of the number of unit fractions to make equivalent fractions (the same size part of the whole) (MP abstract/ quantity) Common error to draw 1 too many vertical lines (2 -split, draw 2 lines not 1)
- What does it mean to multiply the numerator and denominator of $1 / 2$ by the same number?

EQUIVALENT FRACTIONS: WENYOU DO

Math Talk

- What kind of n-split would create this fraction?
- What would you have to multiply the top and bottom by to get that fraction?
- Would this work for any multiplier?
- You Try!
- What kind of n-split would create this fraction?
- What would you have to multiply the top and bottom by to get that fraction?

$$
\begin{array}{ll}
\frac{1}{2}=\frac{8}{16} & \text { We } 8 \text {-split } \frac{1}{2} \text { to make } \frac{8}{16} \cdot \frac{1 \times 8}{2 \times 8}=\frac{8}{16} \\
\frac{1}{2}=\frac{100}{200} & \text { We } 100 \text {-split } \frac{1}{2} \text { to make } \frac{100}{200} \cdot \frac{1 \times 100}{2 \times 100}=\frac{100}{200}
\end{array}
$$

FRACTIONS ON NUMBER LINES

Find equivalent fractions by multiplying

- Finding equivalent fractions for $2 / 3$
- What is the total of the circled thirds?

$$
\frac{1}{3}+\frac{1}{3}=\frac{2}{3}
$$

- Label $\frac{1}{6}$, notice the fractions in the boxes are equivalent to $\frac{1}{3}$ and $\frac{2}{3}$.
Circle enough sixths to make $\frac{1}{3}$ and $\frac{2}{3}$. Then write the total about each part.

MATH TALK

Using the number line as a tool to provide structure...

- How many sixths does it take to make $\frac{1}{3}$?
- How many sixths does it take to make $\frac{2}{3}$?
How can $\frac{4}{6}$ be equal to $\frac{2}{3}$ when $\frac{4}{6}$
 has greater numbers than $\frac{2}{3}$?

EQUIVALENT FRACTIONS

Equivalent fractions are made by:

- More but smaller parts
$\frac{5}{6}=\frac{5 \cdot 2}{6 \cdot 2}=\frac{10}{12}$
- Fewer but larger parts
- $\frac{10}{12}=\frac{10 \div 2}{12 \div 2}=\frac{5}{6}$

Equivalent Fractions

Equivalent fractions are made by:
a. more but smaller parts
$\frac{5}{6}=\frac{5 \cdot 2}{6 \cdot 2}=\frac{10}{12}$

b. fewer but larger parts

$$
\frac{10}{12}=\frac{10+2}{12+2}=\frac{5}{6}
$$

GENERALIZE UNIT STRUCTURE

- As you make more parts of the same whole, the unit fraction becomes smaller
- Denominator becomes larger 5/6 becomes 10/12
- Each unit fraction $1 / 6$ is divided into 2 equal parts
- There will be 2 equal parts for each 1 part so you get 10/12

They discuss and generalize the unit structure as they make more parts of the same whole: the unit fraction becomes smaller as the denominator becomes larger.

Equlvalent Fractions

Equivalent fractions are made by:
a. more but smaller parts

$$
\frac{5}{6}=\frac{5 \cdot 2}{6 \cdot 2}=\frac{10}{12}
$$

GENERALIZE UNIT STRUCTURE

- Multiplication table
- The 5 row and the 6 row helps students see there are many equivalent fractions made by multiplying another fraction by the same number on the top and bottom.

Equivalent Fractions

Equivalent fractions are made by:
a. more but smaller parts

$$
\frac{5}{6}=\frac{5 \cdot 2}{6 \cdot 2}=\frac{10}{12}
$$

EQUIVALENCE IN THE AULTIPLICATION TABLE

- What does row 3 in each table show?
- Multiples of 3
- What does row 5 in each table show
- Multiples of 5

$\mathbf{\times}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4	5	6	$\mathbf{7}$	8	9	10
$\mathbf{1}$	1	2	3	4	5	6	7	8	9	10
$\mathbf{2}$	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70

Students think of the numbers in row 3 as numerators and the numbers in row 5 as denominators.

- Why is $3 / 5$ equivalent to $6 / 10$?
- Both the numerator and denominator of 3/5 have been multiplied by 2.

The first fraction 3/5, is the simplest fraction.

> Why can't we write it with smaller numbers for the numerator and denominator?

> Where do you see the multipliers in the table for the fractions?

$\mathbf{\times}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	9	10
$\mathbf{1}$	1	2	3	4	5	6	7	8	9	10
$\mathbf{2}$	2	4	6	8	10	12	14	16	18	20
$\mathbf{3}$	3	6	9	12	15	18	21	24	27	30
$\mathbf{4}$	4	8	12	16	20	24	28	32	36	40
$\mathbf{5}$	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70

Simplify Dividing the numerator and denominator by the same number makes the fraction smaller by making larger unit fractions.
Unsimplify Multiplying the numerator and denominator by the same number makes the fraction smaller by making smaller unit fractions.

USE A MULTIPLICATION TABLE

The table on the right shows part of the multiplication table at the left. You can make a chain of fractions equivalent to $\frac{1}{3}$ by using the products in the rows for the factors 1 and 3 .

$\begin{array}{llllllllllllll}\mathrm{x} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$										
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
5	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

At your table:
Use the multiplication table to find two fractions equivalent to 4/7.

USE A MULTIIPLICATHON TABLE

Here are two more rows from the multiplication table moved together. These rows can be used to generate a chain of fractions equivalent to $\frac{4}{7}$.

Complete each equation.
24. $\frac{4 \times}{7 \times}=$
25. $\frac{4 x}{7 \times}=$
26. $\frac{20 \div}{35 \div}=$
27. $\frac{36 \div}{63 \div}=$
28. $\frac{12 \div}{21 \div}=$
29. $\frac{24 \div}{42 \div}=$

- Conceptualize why you can multiply the numerator and denominator by forms of 1 to find equivalent fractions
- Connect understanding of fraction bar models to the multiplication table

MATH TALK

Building structure within mathematics.

- How can you change $\frac{3}{5}$ to $\frac{18}{30}$?
- How can you simplify $\frac{18}{30}$?
- How can you change $\frac{3}{5}$ to $\frac{27}{45}$?

\mathbf{X}	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70

MATH TALK

Do and discuss Class Activity

- What's the error? (MP viable arguments/reasoning)

ABTHA
Eatu

- Split Fraction Bars

Use the fraction bars to lind equivalent fractions for $\frac{1}{4}$

6.

- What's the Error?

Dear Math Sturdents.
I tried to find a fraction equivalent to $\frac{5}{5}$ I multiplied the denoninator by 2 to nake maller unit froctions. Thes can't be right becouse $\frac{5}{4}$ is almest 1, and $\frac{5}{2}$ is less then $\frac{1}{2}$ Why doesin't my method work?

Pour friend
Puzrled Penguin

COMPARING FRACTIIONS

- Reasoning
- Understanding like denominators
- Fraction with the greater numerator-- is visually larger and therefore the greater fraction

- Understanding like numerator
- Fraction with the lesser denominator - is visually larger and therefore the greater fraction

STRATEGIES TO COMPARE

- Number lines \& Fraction bars
- Compare
- Explore fraction benchmarks
- Equivalent fractions

Fraction bars are also used to help students compare fractions with different numerators and the same denominator. This model shows that $\frac{2}{5}<\frac{3}{5}$.

Students also explore comparing fractions of different-sized wholes. Models help them visualize that, for example, $\frac{1}{8}$ of a bigger whole is greater than $\frac{1}{8}$ of a smaller whole.

FRACTIONS ON A NUMBER LINE

- How are number lines similar, yet different from fraction strips?

FRACTION LINE-UP

Halves:
Fourths:
Eighths:

Mark and label the halves on the number line.
Mark and label the fourths on the number line.
Mark and label the eighths on the number line.

FRACTION LINE-UP

NUMERATOR LARGER THAN DENOMINATOR

Halves:
Fourths:
Eighths:

Mark and label the halves on the number line.
Mark and label the fourths on the number line.
Mark and label the eighths on the number line.

CLOSEST TO ONE!

Halves:

Fourths:
Eighths:

FRACTION G.O. SHEETS

SPINNING A WHOLE

- Please take out the directions, game spinner, game mat and a paper clip to use with your pencil as a spinner.
- Please read the directions and discuss the objective of the game.
- Do any steps need clarifying?
- Note: We will play on a single game board in order to increase the opportunity for "math talk" during the game.
Please do not begin playing. We will discuss an example before we play a game on our own.

SPINNING A WHOLE

COMPARING FRACTIONS

Advanced because they should understand the mathematical reasons this works

Unlike denominators
 - Need to find common denominators

Case 1: One denominator is a factor of the other. Possible Strategy: Use the greater denominator as the common denominator.	Example Compare $\frac{3}{5}$ and $\frac{5}{10}$. Use 10 as the common denominator. $\begin{aligned} & \frac{3 \times 2}{5 \times 2}=\frac{6}{10} \\ & \frac{6}{10}>\frac{5}{10}, \text { so } \frac{3}{5}>\frac{5}{10} . \end{aligned}$
Case 2: The only number that is a factor of both denominators is 1 . Possible Strategy: Use the product of the denominators as the common denominator.	Example Compare $\frac{5}{8}$ and $\frac{4}{5}$. Use 5×8, or 40 , as the common denominator. $\begin{aligned} & \frac{5 \times 5}{8 \times 5}=\frac{25}{40} \quad \frac{4 \times 8}{5 \times 8}=\frac{32}{40} \\ & \frac{25}{40}<\frac{32}{40}, \text { so } \frac{5}{8}<\frac{4}{5} \end{aligned}$
Case 3: There is a number besides 1 that is a factor of both denominators. Possible Strategy: Use a common denominator that is less than the product of the denominators.	Example Compare $\frac{5}{8}$ and $\frac{7}{12}$. 24 is a common multiple of 8 and 12 . Use 24 as the common denominator. $\begin{aligned} & \frac{5 \times 3}{8 \times 3}=\frac{15}{24} \quad \frac{7 \times 2}{12 \times 2}=\frac{14}{24} \\ & \frac{15}{24}>\frac{14}{24}, \text { so } \frac{5}{8}>\frac{7}{12} . \end{aligned}$

Differentiated Instruction

Advanced Learners Cross-

multiplication is a shortcut method for comparing two fractions. Show students the example below and ask them to explain why this method works. Ask them if they think the method will work for any two fractions.

$$
21>20 \text { so, } \frac{3}{4}>\frac{5}{7}
$$

Multiplying the denominators will always result in a common denominator. So, you only need to cross multiply to find the new numerators and compare them to decide which fraction is greater. The method will work for any two fractions.

MATH TALK

0

Formative Assessment: Check Understanding

Student Summary Ask students to describe at least two strategies they might use to compare fractions and to give examples to illustrate their methods. Students might mention rewriting the fractions so they have the same denominator and then comparing the numerators or using benchmarks and reasoning.

Which mathematical practices are being used to answer this question and why do you think that?

FRACTIONS GREATER THAN II AND AMIXED NUMBERS

- Building fractions from unit fractions is used to develop the ideas of fractions greater than 1 and mixed numbers

$$
\left[\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}\right]+\frac{1}{4}=1 \frac{1}{4}
$$

$$
\frac{5}{4}-\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}
$$

FRACTIONS GREATER THAN 11 AND AMIXED NUMBERS

- Build Mixed Numbers from Unit Fractions

$$
\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}
$$

BUILD (MMPRopere?) FRACTIONS...

- Build $2 \frac{3}{5}$ with your fraction strips.

- How many fifths do you have in all?
- 5 fifths +5 fifths +3 fifths $=13$ fifths
- How could you write this as an improper fraction?
- $\frac{13}{5}$

BUILD FRACTIIONS...

Check your answer by turning over the two whole fraction strips.

MIXED NUMBERS AND...

- For the mixed number $4 \frac{2}{5}$, how do you know how many 1 whole strips are needed to make the mixed number?
- Look at the whole number... 4
- How do you know how many more fraction strips are needed to make the fraction in the mixed number?
- Look at the numerator for how many and the denominator for what type... $\frac{2}{5}$

MIXED NUMBERS AND FRACTIONS

- Use your fraction strips to rewrite 4 2/5 into a fraction.
- Record and discuss what you did?

Whole numbers plus the fractions
$4 \frac{2}{5}=1+1+1+1+\frac{2}{5}$
Write the number of parts to each whole
$4 \frac{2}{5}=\frac{5}{5}+\frac{5}{5}+\frac{5}{5}+\frac{5}{5}+\frac{2}{5}$
Write the total number of parts
$4 \frac{2}{5}=\frac{22}{5}$

FRACTIONS

- For the fraction $\frac{19}{5}$, how do you know what type of fraction strip to use to build this fraction?
- Look at the denominator...fifths
- How do you know how many fifths are needed to make the fraction with fraction strips?
- Look at the numerator... 19

FRACTIONS AND MIXED NUMBERS

- Students will use their fraction strips to rewrite $\frac{19}{5}$ into a mixed number with the following sequence.

Number of parts to each whole
$\frac{19}{5}=\frac{5}{5}+\frac{5}{5}+\frac{5}{5}+\frac{4}{5}$
Whole number plus the fraction

$$
\begin{aligned}
& \frac{19}{5}=1+1+1+\frac{4}{5} \text { Total } \\
& \frac{19}{5}=3 \frac{4}{5}
\end{aligned}
$$

FRACTION G.O. SHEETS

	1 Whole
$2 \frac{3}{4}$	
	1 Whole
	$\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$
faction	Fracio
	$\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$
$\frac{11}{4}$	$\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$
${ }_{4}{ }_{4}{ }_{\text {times }} 2+3$ "	$\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$

MATH TALK

- What's the Error?

-What's the Error?

Dear Hath Students,
I had to write $3 \frac{4}{5}$ as a froction as part of my homework. I think that $\frac{3}{5}$ means 3 four-fifths. This is what I wroter
$3 \frac{4}{5}-\frac{4}{5}+\frac{4}{5}+\frac{4}{5}=\frac{2}{5}$
My friend fold me this is not correct. : that did I do wrong? Can you explain how I can write $3 \frac{4}{5}$ os a froction?

Your friend,
Puzzled Penguin

YOU TRY! ADD AND SUBTRACT FRACTIONS

Use fraction strips to add $\frac{3}{8}+\frac{2}{8}$

$$
\frac{3}{8}+\frac{2}{8}=\frac{5}{8}
$$

- Use fraction strips to subtract $\frac{7}{8}-\frac{2}{8}$

$$
\frac{7}{8}-\frac{2}{8}=\frac{5}{8}
$$

ADD LIKE MIXED NUMBERS

Add

- Add whole number parts and fractions parts separately and regroup if needed.

- Rewrite the mixed numbers as fractions and add

$$
1 \frac{2}{3}+1 \frac{2}{3}=\frac{5}{3}+\frac{5}{3}=\frac{10}{3}=3 \frac{1}{3}
$$

ADD LIKE MIXED NUMBERS

- Draw a picture to add and regroup.

$$
\begin{aligned}
& 1 \frac{2}{3}+1 \frac{2}{3}=1+1+\frac{2}{3}+\frac{2}{3}=1+1+\frac{1}{3}=3 \frac{1}{3} \\
& 1 \frac{2}{3}+1 \frac{2}{3}=2+\frac{4}{3}=2+1+\frac{1}{3}=3 \frac{1}{3}
\end{aligned}
$$

- Which way did you see?

SUBTRACT LIKE MIXED NUMBERS

Subtract

- Subtract whole number parts and fraction parts separately, ungroup first

- Add on from the lesser number to the greater number.
- Rewrite the mixed numbers as fractions and subtract.

$$
\frac{7}{5}-2 \frac{2}{5}=\frac{36}{5}-\frac{14}{5}=\frac{2 \pi}{5}=4 \frac{2}{5}
$$

SUBTRACT MIIXED NUMBERS WITH

RENAMING

Rename mixed numbers before you can subtract

$$
7 \frac{1}{5}-2 \frac{4}{5}=\quad \text { Since } \frac{1}{5} \text { is less than } \frac{4}{5}=\text {, rename } 7 \frac{1}{5}=6+\frac{5}{5}+\frac{1}{5}=6 \frac{6}{5}
$$

What is the difference between the fractions?

$$
\begin{array}{r}
7 \frac{1}{5}=6 \frac{6}{5} \\
-2 \frac{4}{5}=-2 \frac{4}{5}
\end{array}
$$

What is the difference between the whole numbers?

$$
\begin{array}{r}
7 \frac{1}{5}=6 \frac{6}{5} \\
-2 \frac{4}{5}=-2 \frac{4}{5}
\end{array}
$$

$$
4 \frac{2}{5}
$$

MATH TALK

What is the Error - or Anticipate why kids do not understand this...

$$
\begin{aligned}
5 \frac{2}{5} & =5 \frac{7}{5} \\
-3 \frac{4}{5} & =-3 \frac{4}{5}
\end{aligned}
$$

$$
2 \frac{3}{5}
$$

To get $\frac{7}{5}$ in the top number you have to ungroup one of the wholes in 5 to get $\frac{5}{5}$. This leaves you with one less whole than you had before, so you should have changed 5 to 4. This would give you $4 \frac{7}{5}-3 \frac{4}{5}$ which is $1 \frac{3}{5}$
Do they understand 5/5 = 1?

- Use fraction strips as a mathematical tool

ADD AND SUBTRACT UNLIKE FRACTIONS AND AMIXED NUMBERS

- Math drawings!!
- Math Talk!

- Concepts and Skills

4. Lee the froctan bar below to helo you explsin ehy $\frac{1}{4}$ and $\frac{C}{6}$ are tquivalem frextione OUnsion 1-2)

Possible answer: 3 of 4 equal parts, or $\frac{3}{4}$ are shadod. If you divide each part into twe equal parts then 6 out of 8 equal parts or $\frac{6}{6}$ are thaded. The sme part of the whole ts shaded, so $\frac{3}{4}$ if equivalent to $\frac{6}{6}$
5. Esplin how you knew that the um brlow in nut ressontile eithout computing the artul mem, (Levvon i-11)]
$\frac{E}{E}+\frac{1}{7}=\frac{8}{6}$
Passible answer: The addend $\frac{8}{9}$ is almost 1. Because $\frac{35}{63}$
is just a little more than $\frac{1}{2}$, it is not great enough to be
the sum of $\frac{6}{g}$ and another number.

RENAME FRACTIONS TO ADD

- Why can't you add $\frac{1}{3}+\frac{1}{4}$ easily?
- You can't tell where $\frac{1}{4}$ is on the $\frac{1}{3}$ bar.
- How can you divide both fourths and thirds into the same sized unit fractions?
- Split each third into 4 parts and split each fourth into 3 parts. That gives us twelfths on both bars.
- How many twelfths is $\frac{1}{3}$ and $\frac{1}{4}$?
- What is the total? $\frac{4}{12}+\frac{3}{12}=\frac{7}{12}$

Thirds

Fourths

STRATEGIES FOR RENAMING

- Use strategies for comparing fractions to rewrite fractions for adding. (MP repeated reasoning)
Connect symbols and models. (MP reason abstract/quantitatively) Add $\frac{5}{8}+\frac{1}{4}$

$$
\frac{5}{8}+\frac{1}{4}=\frac{5}{8}+\overline{8}=\frac{5+2}{8}=\frac{7}{8}
$$

$1 / 8+1 / 4$ Doesn't tell us what the total is called, so how can we decide? Divide the bar and rename a unit fraction that can also make 1/8 and 1/4
Find a Common Denominator, $1 / 4=2 / 8$

USING FRACTION STRIPS

Please take out your fraction strip template and follow along with the next example.

FRACTION STRIPS TO ADD

- How to use fraction strips to add 3/4 + 5/6

RENAME THE MIXED NUMBERS AND

SUBTRACT

Subtract $5 \frac{1}{2}-1 \frac{2}{3}$

Find the LCD

$$
\frac{1 \times 3}{2 \times 3}=\frac{3}{6} \quad \frac{2 \times 2}{3 \times 2}=\frac{4}{6}
$$

- Multiply the 2 denominators: 2×3

Rename the mixed numbers.

$$
\begin{array}{r}
5 \frac{1}{2}=5 \frac{3}{6}=4 \frac{9}{6} \\
-1 \frac{2}{3}=1 \frac{4}{6}=-1 \frac{4}{6}
\end{array}
$$

Find the difference.

$$
3 \frac{5}{6}
$$

MATH TALK

What is the Error?
 $$
\frac{3}{5}+\frac{3}{10}=\frac{6}{15}
$$

Describe 2 ways to justify why this is wrong?

The fraction $3 / 5$ is more than $1 / 2$, but the sum is less than $1 / 2$. Therefore it cannot be correct.

To add two fractions, they have to have the same denominator. That is, they have to be made from the same unit fractions. The fraction $2 / 5$ is made from fifths, while the fraction $3 / 10$ is made from tenths. Because these unit fractions are different sizes, the fractions cannot be combined.

If we change the fraction $3 / 5$ to equivalent fraction $6 / 10$, then the two addends will have the denominator 10 . That is both will be made from the same unit fraction $1 / 10$. Then we can add them.

When we find $6 / 10+3 / 10$, we are adding 6 tenths and 3 tenths, which is 9 tenths, or $9 / 10$. So we add the numerators and leave the denominator as tenths.

UNDERSTANDING EXPRESSIONS

- How would you explain the following expressions?
- 5×2
- 2×5

Now, how would you explain the following expressions?

- $5 \times 1 / 2$
- $1 / 2 \times 5$

In the United States:

$3 \times 6=\square$ means 3 sixes: $6+6+6$
How many are in 3 groups of 6 things each?

In many other countries:
$3 \times 6=\square$ means 6 threes: $3+3+3+3+3+3$
How many are 3 things taken 6 times?
(6 groups of 3 things each)

(4) Write a 55 multiplication equation for each picture.

$5 \times 1 / 2$

" 5 groups of $1 / 2$ "

- We need to draw 5 "halves" using fraction strips.

$$
1 / 2+1 / 2+1 / 2+1 / 2+1 / 2=5 / 2=21 / 2
$$

$1 / 2 \times 5$

"1/2 of 5 wholes"

- We need to draw 5 "whole" fraction strips.

MULTIPLY A WHOLE NUMBER

BY A FRACTION

- Begin by multiplying a whole number by a fraction
- Grade 4, multiplication of a fraction by a whole number as repeated addition
- $3 \cdot \frac{2}{5}=\frac{2}{5}+\frac{2}{5}+\frac{2}{5}=\frac{6}{5}=1 \frac{1}{5}$
- Grade 5 multiplication of a whole number by a fraction as finding that fraction of the whole number

Class Activit Name

\qquad
\rightarrow Fractional Multiplication
Complete.

1. A racetrack is 8 kilometers long. Alex ran around the track 4 times.

8 taken 4 times $=$ _ kilometers

$$
4 \times 8=
$$

2. Kento ran around the same track $\frac{1}{4}$ times.
8 taken $\frac{1}{4}$ times $=\square$ kilometers
$\frac{1}{4} \times 8=\quad$ kilometers
3. Markers come in sets of 6 . Alta has 3 sets 6 taken 3 times $=\ldots$ markers

$$
3 \times 6=\ldots \text { markers }
$$

4. Isabel has $\frac{1}{3}$ of a set of 6 markers.

6 taken $\frac{1}{3}$ times $=$ \qquad markers
$\frac{1}{3} \times 6=$ \qquad

- Relate Fractional Multiplication and Whole-Number Division

Complete each equation chain like the one shown.

```
\frac{1}{4}\mathrm{ of }8=\frac{1}{4}\times8=8\div4=\frac{8}{4}=2
5. }\frac{1}{3}\mathrm{ of }9
```

\qquad

``` \(=\)
``` \(\qquad\)
``` \(=\)
```



``` \(-=\)
``` \(\qquad\)
```

6. $\frac{1}{7}$ of $21=$
``` \(\qquad\)
\(\qquad\)
``` \(=\square=\) \(=\)
7. \(\frac{1}{5}\) of \(30=\square=\square=\)
8. Circle the expression that does not mean the same as the others.
\(\frac{1}{6} \times 24 \quad 24 \div 6 \quad \frac{24}{6} \quad \frac{6}{24} \quad \frac{1}{6}\) of 24
```


MULTIPLYING

BY A UNIT FRACTION

3. Markers come in sets of 6 . Alta has 3 sets.

6 taken 3 times $=$ \qquad markers
$3 \times 6=$ \qquad markers
4. Isabel has $\frac{1}{3}$ of a set of 6 markers.

6 taken $\frac{1}{3}$ times $=$ \qquad markers
$\frac{1}{3} \times 6=$ \qquad markers

- $\frac{1}{3}$ is 1 of 3 equal parts
- $\frac{1}{3} \cdot 6$ or $\frac{1}{3}$ of 6
- Requires dividing 6 into 3 equal parts

MULTIPLYING WITH FRACTION STRIPS

Bob eats 2/9ths of his Easter candy each day, for three days in a row. After the third day of eating, what fractional part of his Easter candy did he eat?

Use a fraction strip to show how much he ate.

Write an addition equation to show how much he ate. $2 / 9+2 / 9+2 / 9=6 / 9 \quad 3 \times 2 / 9=6 / 9$

- Now, write this as a multiplication equation.

COMPARISON PROBLEMS

Multiplying using unit fraction language

- If a quantity b is n times a quantity a,
then a is $\frac{1}{n}$ times b
- $6_{(\text {(b) }}$ is $3_{(n)}$ times $2_{(a)}$
- $6=3 \cdot 2 \quad(b=n \cdot a)$
- $2_{\text {(a) }}$ is $\left.\frac{1}{3} \frac{(1}{n}\right)$ times $6_{\text {(b) }}$
- $2=\frac{1}{3} \cdot 6 \quad\left(a=\frac{1}{n} \cdot b\right)$

Natasha made 12 quarts of soup. Manuel made 3 quarts
9. Draw comparison bars to show the amount of soup each person made.

Manuel $=\frac{1}{4} \cdot$ Natasha
10. Natasha made 4 times as many quarts as Manuel
11. Manuel made $\frac{1}{4}$ as many quarts as Natasha
12. Write two multiplication equations that compare the amounts.

$$
n=4 \cdot m \quad m=\frac{\frac{1}{4} \cdot n}{}
$$

13. Write a division equation that compares the amounts. $m=n+4$
```
G5 5.NF.4 Comparison Problems with Unit Fraction
Language
```

- Discuss Comparison Problems

To prepare for a family gathering, Sara and Ryan made soup. Sara made 2 quarts. Ryan made 6 quarts.

You can compare amounts using multiplication and division.
Let r equal the number of quarts Ryan made.
Let s equal the number of quarts Sara made.
Ryan made 3 times as many quarts as Sara

$$
r=3 \cdot s
$$

Sara made one third as many quarts as Ryan.

Ryan (r)| | 2 | 2 |
| :--- | :--- | :--- |
| | 2 | |
| Sarah (s) | 2 | |

$$
s=\frac{1}{3} \cdot r \text { or } s=r \div 3
$$

MULTIPLY A WHOLE NUMBER BY A

 NON-UNIT FRACTION$\frac{a}{b} \cdot\left(\frac{1}{b} \cdot n\right)$
Silver City is 24 miles away. Gus has driven $\frac{1}{4}$ of the distance. Emma has driven $\frac{3}{4}$ of the distance.

Draw a line from 0-24. To show fourths, divide it into 4 equal parts of 6

- $24 \div 4=6$
- $\frac{1}{4}$ of the way is 6 miles
- $\frac{2}{4}$ of the way is 12 miles
- $\frac{3}{4}$ of the way is 18 miles

Use the answer for $1 / 4$ of the distance to find $3 / 4$ of the distance.

- $3 / 4$ is $1 / 4+1 / 4+1 / 4$
- $1 / 4$ of the distance is 6 miles
- So $3 / 4$ of the distance is $6+6+6=18$ miles

MULTIPLY A WHOLE NUMBER BY A

 NON=UNIT FRACTIONSilver City is 24 miles away. Gus has driven $\frac{1}{4}$ of the distance. Emma has driven $\frac{3}{4}$ of the distance.
$-\frac{3}{4} \cdot 24=3 \cdot\left(\frac{1}{4} \cdot 24\right)$

- To find $\frac{3}{4}$ of 24 , calculate $\frac{1}{4}$ of 24

- Think $\frac{1}{4} \cdot 24=\frac{1}{4} \cdot \frac{24}{1}=\frac{24}{4}=24 \div 4=6$ EMPHASIS on connection of unit fraction
How many miles has Gus driven? 6 mi
- Then multiply the result - 6 by 3

How many miles has Emma driven? 18 mi
How many times as far as Gus has Emma driven? 3 times as far

G5 5.NF. 4 Any Fraction Times a Whole Number

- Multiply by a Non-Unit Fraction

6. Which expression does not have the same value as the others?

$$
\frac{1}{4} \text { of } 3 \quad \frac{1}{4} \cdot 3 \quad 4 \cdot \frac{1}{3} \quad \frac{1}{4}+\frac{1}{4}+\frac{1}{4} \quad 3 \cdot \frac{1}{4}
$$

Circle the fractions on the number lines to help you multiply.
7. a. $\frac{1}{7} \cdot 2=$ \qquad

b. $\frac{3}{7} \cdot 2=$ \qquad

8. a. $\frac{1}{5} \cdot 3=$ \qquad

b. $\frac{4}{5} \cdot 3=\frac{12}{5}$

FRACTIONAL PRODUCTS

Finding a unit fraction of a whole number by finding that fraction of each 1 whole and then adding the result Farmer Diaz has 3 acres of land. He plows $\frac{1}{5}$ of this land.

- The number of acres he plows is $\frac{1}{5}$ of 3 or $\frac{1}{5} \cdot 3$

- The diagram shows Farmer Diaz's land divided vertically into 3 acres. The dashed horizontal segments divide the land into five parts.
The shaded strip is the $\frac{1}{5}$ of the land Farmer Diaz plowed.
- The drawing shows that taking $\frac{1}{5}$ of the 3 acres is the same as taking $\frac{1}{5}$ of each acre and combining them.
- Mathematically
- So, $\frac{1}{5}$ of the 3 acres is $\frac{3}{5}$ acre

$$
\begin{aligned}
\frac{1}{5} \cdot 3 & =\frac{1}{5}(1+1+1) \\
& =\frac{1}{5} \cdot 1+\frac{1}{5} \cdot 1+\frac{1}{5} \cdot 1 \\
& =\frac{1}{5}+\frac{1}{5}+\frac{1}{5} \\
& =\frac{3}{5}
\end{aligned}
$$

FRACTION BAR MODEL

- Help understand why the product of two fractions is the product of the numerators over the product of the denominators
$\frac{2}{3} \cdot \frac{4}{5} \quad$ or $\quad \frac{2}{3}$ of $\frac{4}{5}$

To model $\frac{2}{3} \cdot \frac{4}{5}$, or $\frac{2}{3}$ of $\frac{4}{5}$, first circle four of the fifths on the fifths bar. To find the product, we must find $\frac{2}{3}$ of each of the circled fifths.

Divide each fifth into thirds, which divides the whole bar into fifteenths.

Circle $\frac{2}{3}$ of each of the circled fifths. Each of these circled groups is 2 fifteenths of the whole bar.

We have circled 4 groups of 2 fifteenths or $\frac{8}{15}$. So $\frac{2}{3} \cdot \frac{4}{5}=\frac{8}{15}$. The product is the product of the numerators over the product of the denominators.

FRACTION BY A FRACTION

What does $\frac{1}{2} \cdot \frac{1}{4}$ mean?
$=\frac{1}{2}$ of $\frac{1}{4}$ is $\frac{1}{8}$ of the whole

$$
\begin{aligned}
& \frac{1}{2} \text { of } \frac{1}{4} \\
& \qquad \begin{array}{|c|c|c|c|c|c|c|c|}
\hline 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 & 1 / 8 \\
\hline
\end{array}
\end{aligned}
$$

The general formula for the product of two fractions $\frac{a}{b} x \frac{c}{d}=\frac{a c}{b d}$

- To find the denominator: b split each $\frac{1}{d}=b \cdot d$
- To find the denominator: take c groups of a of the new unit fractions $a \cdot c$
Equation is not needed in grade 5 BUT should reason out many examples using fraction strips and number line diagrams.

WATCH FOR!

๑ $\frac{2}{3} o f \frac{4}{5}$

- Some students may mark only the $\frac{2}{3}$ part of each fifth and forget to mark the $\frac{1}{3}$ parts

- This would lead to an answer of $\frac{4}{10}$ or $\frac{2}{5}$

- Four groups of 2 fifteenths circled $\frac{2}{3}$ of $\frac{4}{5}=\frac{8}{15}$

What the error?

Class Activity
Class Activity

- What's the Error?

Dear Math Students,
I multiplied $\frac{7}{12}$ - $\frac{3}{4}$ - but I think my answer is wrong. When youtake a fraction of a fraction. you should get a smaller fricaction. But my answer is larger. What mistake did I make? How do I correct it?

$$
\frac{7}{\frac{7}{3}} \cdot \frac{7}{4}-\frac{31}{3}=7
$$

Your friend.
Puzzled Penguin

You divided two numbers in the denominator by the same factor. To simplify you must divide a number in the numerator and a number in the denominator by the same factor.

Compare visually to see the difference between adding and multiplying

- Compare Multiplication and Addition

These fraction bars show how we add and multiply fractions.

1. Which problem above has the greater answer? addition problem
2. Circle the problem that will have the greater answer. Then solve.
 the right have different denominators. Circle the problem that will have the greater answer. Then solve.

- Compare Fraction and Whole-Number

 OperationsTell whether the answer will be less than or greater than the red number.
4. $a+b$ greater
5. $a-b$ less
6. $b \cdot a$ greater
7. $\frac{a}{b}+\frac{c}{d}$ greater
8. $\frac{a}{b}-\frac{c}{d}$ less
9. $\frac{c}{d} \cdot \frac{a}{b}$ less
10. How is multiplying fractions different from multiplying whole numbers?
For fractions, you're taking part of a group. For

Keep in Mind

 a and b are whole numbers greater than 1.All of the fractions are less than 1. whole numbers, you're taking whole groups.

- What's the Error?

Dear Math Students,

One of my friends said that he would give $\frac{1}{2}$ of his sandwich to me and $\frac{1}{2}$ of his sandwich to my sister. My sister said, "But then you won't have any left for yourself." This doesn't make sense to me. I know that $\frac{1}{2}+\frac{1}{2}=\frac{2}{4}$. My friend should have plenty left for himself. Did I do something wrong? What do you think?
Puzzled Penguin

3. Write a response to Puzzled Penguin.

The two fractions have a common denominator.
To add them, you add the numerators and keep the
denominator the same. $\frac{1}{2}+\frac{1}{2}=\frac{2}{2}=1$ \qquad

FRACTIONAL OPERATIONS

\square
Adding $\frac{2}{3}$ to $\frac{1}{3}$

- 1 third plus 2 thirds
- Greater than $\frac{1}{3}$, putting together

Taking $\frac{2}{3}$ of $\frac{1}{3}$

- 2 thirds of 1 third
- less than $\frac{1}{3}$, taking apart

Discuss Building Concepts

Building Concepts In addition to discussing how fraction operations are alike and different from wholenumber operations, you may want to provide a bigger picture that includes decimals and measuring units. This can help students recognize the common themes in mathematics.
Addition, Subtraction, and Comparison: Only like units can be added or subtracted (hundreds and hundreds, inches and inches, fourths and fourths). If the units are different, one or both of them needs to be changed to make them the same before they can be added or subtracted. Using like units can also make comparing easier.
Multiplication ($a \cdot b$): For a wholenumber multiplier a, taking a groups of size b results in a product that is greater than b. For a fraction or decimal multiplier $a<1$, taking part of a b-sized group results in a product that is less than b.

- Multiply a whole number w by another whole number
- Product will be greater than w because you are combining more than one copy of w
\odot Multiply a fraction $\frac{a}{b}$ that is less than 1 by another fraction less than 1
- Product will be less than
$\frac{a}{b}$ because you are taking a part of $\frac{a}{b}$

10. Multiplying any number, n, by a factor less than 1 gives a product less than
11. Multiplying any number, n, by a factor equal to 1 gives a product _ equal to
12. Multiplying any number, n, by a factor greater than 1 gives a product greater than n.

Multiplying a fraction by a fraction equal to 1 gives an equivalent fraction. It is the same as multiplying both the numerator and denominator by the same number.

$$
\frac{4}{7}=\frac{4}{7} \cdot \frac{3}{3}=\frac{12}{21} \quad \frac{4}{7}=\frac{4 \cdot 3}{7 \cdot 3}=\frac{12}{21}
$$

Multiply the fraction by a factor equal to 1 to create an equivalent fraction. Answers will vary.

- Explore Fractional Shares

- $4 \cdot \frac{3}{4}=3 \quad 3 \div 4=\frac{3}{4}$
- F F P P F F
- Solving $3 \div 4=$? Is equivalent to 4 .__ $=3$
- $12 \cdot \frac{1}{2}=6 \quad 6 \div \frac{1}{2}=12$
- F F P P F F
- Discuss the inverse relationship between the equations
- First equation tells us that if we combine 12 groups of $\frac{1}{2}$ we get 6
- The second tells us that if we divide 6 into groups of $\frac{1}{2}$ we get 12 groups

DIVIDING WITH UNIT

FRACTIONS

Please watch and reflect on the meaning of $1 / 2 \div 4$.

- Divide $1 / 2$ into 4 equal groups...how much does each group equal?

- Each group equals 1/8.

IF TIMME ALLOWS

Multiplication and Division of whole numbers

MULTIPLICATION

- Array and area diagrams to represent multiplication
- Connect math drawings to numbers and symbols
Algorithms are summaries of their reasoning about quantities

G4 Why So Many Grade 4 Multiplication Methods?

Math Expressions shows three methods to write each partial product:
a. Place Value Sections writes each partial product within rectangle sections and then adds these up outside; this is easier spatially for some students.
b. Expanded Notation writes a multiplication and the partial products with helping steps; the helping steps can be dropped whenever students can do so.
c. Algebraic Notation is like polynomial multiplication (40+3)(70+8); many advanced students love to "be doing algebra."
These methods all use an array/area rectangle model, show the distributive property in different ways, and lead students to deep understandings as the methods are related. Students build fluency with the method of their choice.

Students discuss more compact methods with two products each in a row. These methods are developed more fully in Grade 5 because they can be useful for G5 division by 2-digit numbers. These methods are difficult for many Grade 4 students for larger numbers and do not need to be mastered.

PLACE VALUE AND MULTIPLICATION

Structure

- Make connections between place value and multiplication

Repeated reasoning

- Generalize that 10 times any ones number gives you that number of tens and 10 times any hundreds number gives you that number of thousands
- This is the underlying concept upon which our place value system is built

Make Sense, Model, and Structure

 Draw a 20×30 rectangle on yourMathBoard

Divide that rectangle into 10-by-10 squares

- What do the smaller boxes represent?
- Notice the tiles are set in 20 equal groups of 30
- What value does each of these squares represent?
- How many groups of 100 are there?
- What is the total area?
- Model a Product of Tens

Olivia wants to tile the top of a table. The table is 20 inches by 30 inches. Olivia needs to find the area of the table in inches.
2. Find the area of this 20×30 rectangle by dividing it into $10-\mathrm{by}$ - 10 squares of 100 .

3. Each tile is a 1 -inch square. How many tiles does Olivia need to cover the tabletop? 600
4. Each box of tiles contains 100 tiles. How many boxes

\times	3	30	300	3,000
2	a. $2 \times 3=6$	b. $\begin{aligned} & 2 \times 30 \\ = & 2 \times 3 \times 10 \\ = & 6 \times 10 \\ = & 60 \end{aligned}$	$\text { c. } \begin{aligned} & 2 \times 300 \\ = & 2 \times 3 \times 100 \\ = & 6 \times 100 \\ = & 600 \end{aligned}$	d. $\begin{aligned} & 2 \times 3,000 \\ = & 2 \times 3 \times 1,000 \\ = & 6 \times 1,000 \\ = & 6,000 \end{aligned}$
20	e. $\begin{aligned} & 20 \times 3 \\ = & 2 \times 10 \times 3 \\ = & 6 \times 10 \\ = & 60 \end{aligned}$	f. $\begin{aligned} & 20 \times 30 \\ = & 2 \times 10 \times 3 \\ & \times 10 \\ = & 6 \times 100 \\ = & 600 \end{aligned}$	g. $\begin{aligned} & 20 \times 300 \\ = & 2 \times 10 \times 3 \\ & \times 100 \\ = & 6 \times 1,000 \\ = & 6,000 \end{aligned}$	h. $\begin{aligned} & 20 \times 3,000 \\ &= 2 \times 10 \times 3 \\ & \times 1,000 \\ &= 6 \times 10,000 \\ &= 60,000 \end{aligned}$
200	i. $\begin{aligned} & 200 \times 3 \\ = & 2 \times 100 \times 3 \\ = & 6 \times 100 \\ = & 600 \end{aligned}$	$\text { j. } \begin{aligned} & 200 \times 30 \\ = & 2 \times 100 \times 3 \\ & \times 10 \\ = & 6 \times 1,000 \\ = & 6,000 \end{aligned}$	$\text { k. } \begin{aligned} & 200 \times 300 \\ & =2 \times 100 \times 3 \\ & \times 100 \\ & =6 \times 10,000 \\ & =60,000 \end{aligned}$	I. $\begin{aligned} & 200 \times 3,000 \\ &= 2 \times 100 \times 3 \\ & \times 1,000 \\ &=6 \times 100,000 \\ &= 600,000 \end{aligned}$
2,000	m. $\begin{aligned} & 2,000 \times 3 \\ = & 2 \times 1,000 \times 3 \\ = & 6 \times 1,000 \\ = & 6,000 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { n. } & \\ & 2,000 \times 30 \\ = & 2 \times 1,000 \times 3 \\ & \times 10 \\ = & 6 \times 10,000 \\ = & 60,000 \end{array}$	$\text { o. } \begin{aligned} & \quad 2,000 \times 300 \\ & =2 \times 1,000 \times 3 \\ & \times 100 \\ & = \\ & =6 \times 100,000 \\ & = \\ & 600,000 \end{aligned}$	$\begin{aligned} & \text { p. } \\ & \quad \begin{array}{l} 2,000 \times 3,000 \\ = \\ 2 \times 1,000 \times 3 \\ \\ \\ \times 1,000 \\ = \\ = \end{array} \times 1,000,000 \\ & =6,000,000 \end{aligned}$

FACTOR THE TENS

Reason abstractly and quantitatively $\&$ Precision

- Use place value language to explain where the numbers are coming from.
- Step one: factor
- Step two: commutative/associative property
- Step three: simplify
- Step four: product

2 tens $\times 3$ tens

$$
\begin{aligned}
20 \times 30 & =2 \times 10 \times 3 \times 10 \\
& =(2 \times 3) \times(10 \times 10) \\
& =6 \times 100 \\
& =600
\end{aligned}
$$

- What's the error?
- Reason abstractly and quantitatively

$$
\begin{aligned}
20 \times 20 & =(2 \times 10)+(2 \times 10) \\
& =(2 \times 2)+(10 \times 10) \\
& =(4)+(100) \\
& =104
\end{aligned}
$$

- Added the factors instead of multiplying
- Drew a 20×20 rectangle and divided it into $10-$ by-10 squares of 100 the rectangle would show 4 groups of 100. That's 400 square units not 104.

MULTIPLICATION METHODS

- Solve and discuss
- Place Value Sections
- Expanded Notation
- Algebraic Notation
- Shortcut

Make sure nouns and verbs match numerals and symbols

5. Explain how the Expanded Notation Method is similar to the Place Value Sections Method when multiplying a one-digit number by a two-digit number. (Lesson 2-5) Posslble ancwer: They both write the factors in
eganded form and then multiply the ones by the tens and the ones by the ones.

PLACE VALUE SECTIONS METHOD

- Shows how to use the area model to multiply by recording each step inside the rectangle, then adding the area of each section outside the rectangle.

- Look for structure by describing what the sections represent
- Left section shows the ones times the tens: 9×30
- Right section shows the ones times the ones: 9×5

PLACE VALUE SECTIONS METHOD

You may want to lead this exploration with all students working on a whiteboard.

1. What are the two steps used to find the product of 4×237 using the Place Value Sections Method?

EXPANDED NOTATION METHOD

- Use the area method as a tool to explain expanded notation
- How is the number 29 represented?
- Remember that when a number shows the total value of each of its digits, it is written in expanded form
- Relate the rectangular model to the numerical form by writing the expanded form of 29
- Find the area of the tens section
- Write the equation
- Find the area of the ones section
- Write the equation
- Then add the two areas

EXPANDED NOTATION METHOD

2. What is the last step in the Expanded Notation Method and the Place Value Sections Method?

DISTRRBUTIVE PROPERTY

The Distributive Property whole class harnutiv

MP. 5 Use Appropriate Tools Model Mathematics Use two different colors to draw the 4-by-5 array shown. Explain the two ways to find the total number of dots in the array.

Reason abstractly and quantitatively by connecting the diagram and the equation

- Method 1: First, add the number of the first color of columns and the number of the second color of columns to get the total number of columns. Then, multiply the total number of columns by the number of rows. $(3+2) \times 4$ or $4 \times(3+2)$.
- Method 2: First, multiply to find the number of dots in each array. Then, add the results. $4 \times 3+4 \times 2$

Point out that both methods give the same answer.

ALGEBRAIC NOTATION METHOD

3. What is the first step in all three methods?

MATH TALK

Compare methods

- Which method do you prefer and why?
- Draw an area model and explain how it helps to solve the problem.
- Explain why the method you chose is different from the other two methods.

SHORTCUT METHOD

Must attend to precision and use structure
$4 \times 7=28$, or 2 new tens and 8 ones

4×3 tens $=12$ tens, plus 2 more tens is 14 tens, or a new hundred and 4 tens
4×2 hundreds $=8$ hundreds plus
1 more hundred is 9 hundreds.

DOUBLE DIGIT MULTIIPLICATION

- How would you draw a model for 24×37 ?

- How can you show the tens and ones in 37?
- Draw a vertical line and write $30+7$
- Draw a horizontal line and write 20 + 4

Attend to precision and describe what each section represents

- Record the equation for each step
- The top left section shows the tens times the tens: 20×30.
- The top right section shows the tens in 24 times the ones in 37: 20×7.
- The bottom left section shows the ones in 24 times the tens in 37: 4×30.
- The bottom right section shows the ones times the ones: 4×7.

CONNECT DIAGRAMS AND EQUATIONS

43×67

Area Model
Expanded

$$
43=40+3
$$

Results
43
$\begin{array}{r}\times 67 \\ \hline\end{array}$
2400 280
180
$+21$
2881

Try, 28×54 at your table.

Step 1: $3 \times 7=21$, the 2 tens wait above the 6 tens
$\times 43$
Step 2: 3×6 tens (and include two tens from 3×7): 18 tens +2 tens $=20$

Step 3: Write a zero as a place holder, so that in later steps the products of 40 will be in the right place

Step 4: 4 tens $\times 7=28$ tens
Step 5: 4 tens $\times 6$ tens (and included 2 hundreds from 4 tens $\times 7$): 24 hundreds +2 hundreds $=26$ hundreds

Step 6: add the products of 3×67 and 40×67

OTHER WAYS TO RECORD

 MULTIPLICATIONPartial products- New groups aboveNew groups below
- Shortcut
- Use the area drawing to relate to the shortcut method cless Activity

Name Date

* Other Ways to Record Multiplication

Discuss how the recording methods below shaw the partial products in different ways.

- The Shortcut Method

The staps for the Shartcut Mathod are shown below

New Groups Above				
Step 1	Step 2	Step 3	Step 4	Step 5
37	67	$\frac{37}{67}$	67	6
$\times 43$	$\frac{843}{201}$	$\frac{\times 43}{201}$	$\frac{\times 43}{201}$	$\frac{\times 43}{201}$
1	8	268	$\frac{+268}{2,881}$	

New Groups Below				
Step 1	Step 2	Step 3	Step 4	Step 5
67	67	67	67	67
$\times \frac{43}{1}$	$\frac{\times 43}{201}$	$\frac{\times 43}{201}$	$\frac{\times, 43}{201}$	$\frac{\times, 43}{201}$
	8	268	$\frac{+258}{2,881}$	

Discuss how the amea drawing below relates to the Shortcut Method.
\square

MULTIPLICATION

- Methods
- Working toward fluency

G5 Discuss Multiplication Methods

Place Value Sections

Place Value Rows

Expanded Notation

$$
\begin{array}{r}
67=60+7 \\
43=40+3 \\
\hline 40 \times 60=2,400 \\
40 \times 7=280 \\
3 \times 60=180 \\
3 \times 7=\quad 21 \\
\hline 2,881
\end{array}
$$

1-Row Shortcut

New Groups Below	New Groups Above
67	2
$\times 24$	67
22	$\times 43$
201	$\frac{2,680}{2,881}$

Please turn to the practice on your own.

- When finished, compare and discuss your work as a table group.

(Formative Assessment: Check Understanding

Student Summary Ask students how the Place Value Sections and Expanded Notation methods are alike and how they are different. Student explanations should include the following main point: Expanded Notation and Place Value Sections are both methods of getting the 4 partial products when multiplying a two-digit number by a two-digit number. Each partial product is an area of one place value section. The final product is the sum of the areas of those sections.

DIVISION

- Compare methods

Check for reasonableness
2 digit divisors

Expanded Notation

Dignt-by-Dight

G5 Check for Reasonableness

Miguel has 6 boxes to store 1,350 baseball cards.
He divides and finds that each box will have 225 cards.
To check that his answer is reasonable, he uses
6 $\begin{array}{r}225 \\ 1,350\end{array}$ estimation and mental math:
"I know that $1,200 \div 6$ is 200 and $1,800 \div 6$ is 300 .
Because 1,350 is between 1,200 and 1,800 , my answer
should be between 200 and 300 . It is."

RELATE MULTIIPLYING AND DIVIDING

Divide to find the number of groups in a division situation

- Place Value Sections Method
- One section for each place value of the dividend
- Multiplying with place value - relate dividend and divisor to factors and product
- Expanded Notation Method
- Building quotient place value by stacking the sub-quotients

Name
Dube

- Multiplying and Dividing

Complete the steps

1. 5 am divides 738 by 6 . He uses the Place Walue

Sections Method and the Ixpanded Notation Method
a. Sam thinks I'll draws the Place Value Sections that I know from multiplication. To divide, I need to find how many hundreds,
ters, and ones to find the unknowen factor.
Place Value Sections Method Expanded Notation Method

c. I have 138 left for the other sections.
$6 \times 20=120$ will fit. $6 \times 30=120$ is tee big.

d. $6 \times 3=18$

COMPARE METHODS

Multiplication

- Side lengths of the rectangle represent the factors
- The area represents the unknown product

Division

- Area is given and one of the side lengths (one factor) is unknown

- Area represents the dividend
- One side length represents the divisor
- The other represent the unknown quotient

DISTRIBUTIVE PROPERTY

Analyze Relationships: $\quad 325 \div 5$

Multiplication and division are inverse operations
$325 \div 5$ can be written as $5 \times 65=325$

$$
\begin{aligned}
5 \times 65 & =5 \times(60+5) \\
& =(5 \times 60)+(5 \times 5) \\
& =300+25 \\
& =325
\end{aligned}
$$

Partial products 300 and 25 can be seen in the place value sections

Same as we subtract 300 in the first step and 25 in the last step

Place Value sections $3,248 \div 5$

Question 1: " 5 times what hundreds number gives an answer closest to 3,248 without going over?"

Question 2: " 5 times what tens number gives an answer closest to 248 without going over?"

Question 3: " 5 times what number gives an answer closest to 48 without going over?"

EXPANDED NOTATION $3,248 \div 5$

Question 1: " 5 times what hundreds number gives an answer closest to 3,248 without going over?"

Question 2: " 5 times what tens number gives an answer closest to 248 without going over?"

Question 3: " 5 times what number gives an answer closest to 48 without going over?"
$600+40+9=649 R 3$

Question 1: " 5 times what number gives an answer closest to 3 without going over?"

Question 2: " 5 times what number gives an answer closest to 32 without going over?"

Question 3: " 5 times what number gives an answer closest to $\mathbf{2 4}$ without going over?"

Question 4: " 5 times what number gives an answer closest to 48 without going over?"

649 R3 $5 \longdiv { 3 , 2 4 8 }$

$$
-30
$$

COMPARING METHODS

\odot How are all three methods similar?

- Build the unknown factor place-by-place.
- Subtract each partial product from the part of the number being divided.
- Write the unknown factor above the product with place values aligned.
- How is the digit-by-digit method different?
- The digit-by-digit method only shows parts of the number being divided, instead of the complete partial products.
- The digit-by-digit method, you write your answer as you go along, instead of having to add your partial answers at the end.

CHECK FOR UNDERSTANDING

Discuss

- Formative Assessment: Check Understanding

Student Summary Ask students to share the strategies they use to adjust the quotient when an estimated digit is too low.

Check or look up multiples on a multiplication table Learn difficult multiples
Be less discouraged by division
Find more accurate answers
Recognize numbers that are far from an exact multiple

VIDEO: INTERPRET REMANDERS

Important to understand the meaning and usage of all types of remainders

- A- Remainder that is not part of the question
- B- Remainder that causes the answer to be rounded up
- C- Fraction remainder
- D- Decimal remainder
- E- Remainder only

REMAINDERS

Discuss problems 1-5

1. Ignore the Remainder: When we divide the ribbon into yards, we get 49 yards with 16 inches left over. Because it takes an entire yard of ribbon to wrap a gift, 16 inches is useless. We drop the remainder, and the answer is 49 gifts.
2. Round Up: When we divide the number of people into groups of 52, we get 4 groups with 39 people left over. These people cannot simply be left behind, so we add one more bus. The quotient is rounded up to 5 , and the answer to the problem is 5 buses.
3. Form a Fraction: Unlike buses, slices of pizza can be split. Therefore, it makes sense to include a fraction in the answer. Each student gets 3 whole slices of pizza. The remainder is 14 slices. Because there are 28 students, the 14 slices can each be cut in half, giving everyone another half slice. Be sure the class sees that the remainder (14) becomes the numerator for the fraction, giving us $\frac{14}{28}$, which is $\frac{1}{2}$.
4. Form a Decimal: A part of a dollar (cents) is almost always expressed as a decimal number. Discuss the example about the car wash with the class. Then have students solve Problem 4. The answer can be written as the mixed number $25 \frac{7}{35} \mathrm{~m}$, or $25 \frac{1}{5} \mathrm{~m}$. However, because metric measurements are given in decimal form, we write this as 25.2 m .
5. Use the Remainder Only: Some situations require that we give the remainder only, not the number of groups or the size of the groups. Problem 5 asks how many bagels the workers will get, which is the remainder.

DISCUSS THE ERROR

- You forgot the remainder. The answer to your division problem is 35 with a remainder of 20 . This means that if you put 48 cans in a box, you will fill 35 boxes, but have 20 cans left over. You need to get an extra box to put the extra cans in, so you need 36 boxes in all.

ROBYN SEIFERT DECKER ULTRAMATHPD@GMAIL.COM

